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m, = mass 1

m, = mass 2

m 1
m] = reduCed massl = m
1 2
Ma
m, = reduced mass 2 = Hl_+_rn_2

t = real time
t = pseudo-time

00 = initial angular displacement

f ;= initial angular velocity

p = length of pendulum arm

§ = ¢ = angular displacement of pendulum arm; two symbols are used to make the
notation uniform

2 = p/g = length of pendulum arm in a system of units in which g =1
w = a parameter relating ¢ and t; eventually shown to be a factor specifying frequency
€ = a parameter used to establish asymptotic expansion

r. = a term in the expansion of 2
0. = a term in the expansion of 4
«. = a term in the expansion of w
4. = a term in the exparnsion of m,

= initial length of pendulum arm in system of units for which g =1

k = a parameter relating to frequency in the system in which g = 1; l\"“’zwo/r0
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Section I

Introduction

The Structural Vibration and Acoustics Branch of the US Air Force Flight Dynamics
Laboratory (WRDC/FIBG) has initiated a program to study the dynamics and control of
Large Space Structures (LSS). This Large Space Structures Technology Program (LSSTP)
is intended to enable the Flight Dynamics Laboratory to instrument, test, and analyze
large space structures on the ground in order to predict their behavior in space. Since the
testing i to be done in a ground based laboratory, i.e. under 1-g acceleration, the
experiments must be designed so as to counteract this gravitational effect. One proposal is
to use soft suspension systems. Long cables can provide penduluiu support with low
frequency for horizontal motion, but, for a pendulum, the restraint in the vertical direction
is rigid. One way to provide soft restraint vertically, while maintaining the pendulum
approach, is to counter—balance the test model.

The simplest counter-balanced suspension system is the classic Atwood's machine.!
This consists of two masses my and m, connected by an inextensible, flexible wire of

negligible mass, draped over a frictionless, massless pulley, which in turn is rigidly
suspended from an overhead support. The motion of the two masses is assumed to be
constrained to the vertical direction: either there is no motion, the situation that occurs
when the two masses are equal and there is no initial velocity, or, as one mass rises the
other falls. The most ambitious counter-balanced system envisaged in this report consists
of a lattice-type flexible structure suspended over pulleys, no longer considered frictionless,
by a set of wires, no longer inextensible, and counter-balanced by an identical structure.
Since the two structures do counter—balance each other, the net gravitational effect, at
least at the points at which the wires attach to the bodies, is null.

As might be imagined, there is a host of possibilities between these extremes. In this
report we record sonue of these and indicate how the motion of each may be analyzed. We
have not studied in depth all systems to be described; for those that we have, greater detail
will be given.

The theories and methods used come from Lagrangian mechanics, linear elastic
theory, the calculus of variations, non-linear differential equations, numerical methods for
the solution of algebraic—differential equations, and perturbation theory. ‘Where references
are appropriate, these will be offered; the report otherwise reflects the thoughts of the
author.




Section I1

Statement of the Problem

[I.l.a The classical Atwood's machine is depicted in Figure 1.a. The analysis of this
device is included only because it serves as a guide to the logic and methods used in
subsequent problems.

Using the symbols of Figure 1.a, the kinetic energy is:

T= (%)mlil2 + (%)mziQ2 (1)

and the potential energy is:

V= m,; 8z, + Mgz,

—_
[ )
p—

The Lagrangian function is:
L=T-V (3)

There is, however, a constraint, namely, that the length of the wire joining the two masses
is constant:

o= (h—zl) + 7R + (h—z2) = [ = length of wire (4)
The modified Lagrangian function is:
L=T-V+X\t)® (5)
and where A(t) is a function of the time, t.
Hamilton's principle implies:

31
5f Ldt=0 (6)
t

which in turn yields the Euler—Lagrange equations:
mlil +mg-A=0 (7)
MyZy + Mo~ A =0 (3)

to which we must adjoin the constraint condition: @ = [I°.




With this done, we eliminate A between Equations (7) and (8) and obtain, using Equation

(4):
m, — m, |
il = m2 + m1 (9)
2 1]

as

3
=

o
=

) m; — m,]
2N = _— =
2 m; + My|°
1 2]

When these equations are integrated, we obtain:

[mg — ml
2 (t) = ; m gts + zl(O)t +24(0) (11)
1m1~—m2' . \
zl(t) = m gt + 22(0)t + 22(0) (2

The values for 21(0) and 22(0) are quite arbitrary and depend on the configuration, i.e. the
height h, the radius R and the length of the connecting wire. The values for il(O) and

2,(0) are not arbitrary since il(O) + iQ(O) = {, i.e. as one mass rises the other must fall at
the same speed, both initially and for all future time.

I.1.b The modified Atwood's machine described in this section is depicted in Figure
1.b. The method of solution parallels that given above for the classical case.

The kinetic energy is:

T=()mz,* + (%)inQ2 (1)
and the potential energy is:

V =m,gz; + mygz, (2)

We could proceed and introduce a constraint equation; it would be:

(t) = 2(0) zo(t) - 2,(0)
Z1R11+2R22=0 3)

For variety, we circumvent the use of the constraint by reducing the expressions for the
kinetic and potential energies (written above as functions of z, and z, and their time

derivatives) to functions of the single variable § and its time derivative. The
transformation that accomplishes this is:




so that the kinetic energy becomes:
— (1 2 2y 42
T= (5)(mlR1 + myR, ) 8

and the potential energy becomes:

Vo= mlgzl(O) + m.zgz.Z(O) + (1112R.2—1n1R1)g0

The Lagrangian function is:

and usine Hamilton's principle:
g p i

éf 1Ldt:O

t
\We are led to the Euler-Lagrange equation:

TlRl — m.ZR.2

2 2
mlR1 + 1112R2
In terms of 29 and 24, WC have:

. myR, — m,Ry
Zl N 2 R 2 ng
1112R.2 + m, R,

B mlR1 — m2R2

Zo = R,g
9 > > Ry
m Ry + myR,

It is obvious that if R, = R‘Z’ Equations (11) and (12) reduce to Equations (9) and (10) of

the previous section [I1.1.a].

We assume that the interested reader can integrate and interpret both the first and second

integrals of these equations.

Il.1.c An idealization of an Atwood's machine wherein the wire connecting the two

masses is elastic is given in Figure 1.c. The following additional notation is used:




A = cross-sectional area of the wire
E = Young's modulus

I = length of the unstressed wire

k = elastic constant of the wire = :‘}E

Again, using tLe nomenclature of that figure, the kinetic energy is:

Jmyzo? (1)

T= (%)mlilg + (

SRR

and the potential euergy is:

V= m, gz, + Mygzy + VS (2)
and where VS is the strain energy in the wire. VS is found, assuming Hooke's law, as
follows:

If I is the length of the unstretched wire, i.e. the length before the masses m, and
m,, are attached, then the strain after the system is in motion is:
s=(2h + i = T) - (2 +2zo) (3)

The strain energy is:

V= (%)ks2 (4)

and k is the spring constant for the wire. Again, the Lagrangian is:

L=T-V (5)
and familton's principle dictates:
4
§f Ldt=0 (6)
4
The Euler~Lagrange equations lead to:
m,;z; + k(z) + z9) = k[z;(0) + 25(0)) - m; g (7)
m252 + k(z] + z,) = klz;(0) + 2,(0)] ~ myg (8)

which when integrated become:




1-m2 — m1~ 2
— H x
2, = my(A cos ot + Bsin at) + 2 m, 1, g2 + vt + 24 (9)
1Pm1 — ™y 2
—_— H *
22~m1(A cos ot + Bsin Ut)+5 mgt —V0t+Z2 (10)
L 2)

where A and B are constants of integration, vy is an initial velocity,

—k— 2 11
m1m2
and
. 2m,m, l'i+l;2
o o = a0+ 50 - g T | AR (12)
and where:

b= length of the unstretched wire as measured from the top of the pulley (point P) to the
point where the mass m, is attached (i = 1,2).

We infer from the above equations that the motion of the two masses m, and m, in

an Atwood's machine in which the two rnasses are connected by an elastic wire consists of
two "normal" modes. The first is the motion that would occur if the wire were inelastic.
The second may be interpreted as each mass executing simple harmonic motion, the two
harmonic motions being in phase, with the amplitude of the motion of mass m, being

proportional to the mass m, and the amplitude of the motion of the mass m, being

proportional to ml.2

I1.1.d With Friction on the Bearing. In this section, the equations of motion for an
Atwood's machine for which there is friction on the bearing are derived. Referring to
Figure 1.d, T1 is the tension in the wire that joins the mass m, to the pulley and T2 is the

tension in the wire that joins m,, to the pulley. Also from the figure, it is clear that:

20+ 29 = 2h + 7R - ¢ = constant (1)

where I = length of wire joining the two masses. Differentiating Equation (1) with respect
to time yields:

2) +2y=0 (2)
and
il + 22 =0 (3)
6




The force acting on my is:

T, =m;g+mz, (4)
and on m,:
Ty =myg + m.zi.z (5)

If my > my, S0 that the direction of motion is as depicted in the figure, i.e. clockwise,
the forces balance out as:

T, =T, +Fp (6)

\

where Fp is the force due to friction on the bearing. Denoting the coefficient of friction by
4, the total frictional force is assumed to be:

Fg= uT| + Ty) (n
Thus, Equation (6) becomes, using Equations (3), (4), and (5),

T, =T, +WT, + Ty) (8)
or
. (ml—mg) + I‘(m1+m2)
%o = (mFm,) + a(m;—m,) 8 )

If the coefficient of friction of a particular bearing is unknown, z may be found by
solving for it in Equation (9). A simple experiment, using known masses m, and my, a

known value of g and determining z,, enables one to calculate 4.

11.2.a An Atwood's pendulum is defined as an Atwood's machine in which one of two
masses is allowed to swing as a pendulum while the other remains constrained to move only
in the vertical direction. The pendulum motion of the one mass induces a varying tension
in the connecting wire; this, in turn, produces motion in the second mass. It is shown that
this motion can be made periodic if the ratio of the two masses and the dependency of this
ratio on the initial conditions are chosen as to be prescribed in this report. If this condition
is not met, the m~"ion cor: ists of the superposition of two motions. The first is motion in
a constant gravit - inal field where the effective "gravity" is kg; the factor k is determined
explicitly. TLe < -.ud is the periodic motion that is the central theme of this section of the
report. During vie enurse of the analysis, the fundamental frequency of the periodic
motion is determii- * It is shown to be slightly bigher than the frequency of a pendulum
of comparabl leng.- swinging in the earth's gravitational field; the factor is given
explicitly. This work is restricted to the extent that small angle approximations are
introduced initially for trigonometric functions.

The geometry of the configuration studied is given in Figure 2. From this geometry,
assuming that the masses of the pulley and the wire are negligible and that the radius of

7
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the pulley may be neglected also, the differential equations describing the motion of the
mass m, are:

06 +2p6 +gsinf=0 (1)
(m) +my) p—mopf® +m;g-mygcos §=0
(2)
where dots indicate differentiation with respect to the time ¢&. Equations (1) and (2) may
be simplified slightly if we observe that by letting p = 2g, both equations contain g as a

factor and we may divide through by it. This is equivalent to choosing units so that g = 1.
Furthermore, by using the small angle approximation, these equations then become:

2§ +226 +6=0 (3)
(m + m,)e —m, 262 +(m1—m2)+%n126'° =0 (4)

Case i) Constant 2

We prove now that there is only one solution of Equations (3) and (4) for which
2= 2, = constant. Actually, we shall show that assuming that 2= constant leads to a

contradiction. Using this assumption, Equations (3) and (4) become

208 +0=0 (3.1)

m2¢0¢92 ~(m1—m2)—%m202 =0 (4.1)
Differentiate Equation (4.1) with respect to the time ¢ and divide through by m, to get:
2¢, g6 -0 =0 (5)
If § =0, then Equation (3.1) implies that # = 0 and Equation (4.1) then implies that

m; = m,, the classic Atwood's machine case with equal masses. For this classic example

there is indeed a solution 2= 2 , a constant. If § #0, then Equation (5) implies that

07
2¢, 6 =190 (6)

Equations (3.1) and (6) are incompatible. There is, therefore, no solution of Equations (3)
and (4), other than the classic Atwood's machine, for which 2 is constant.

We proceed now to discover the relationship between m, and m, for which 2(¢) and
g(t) are periodic solutions of Equations (3) and (4).




Case ii) The General Case.

The perturbation technique requires that Equations (3) and (4) be modified and
rewritten as follows:

2= €[m,24* —(ml—mQ)—%mgﬁz] (7)

2 +0=-22%4 (8)

where we have introduced a parameter € and written m; = m, /(m; + m,) and
m, = my/(my + mz). In Equations (7) and (8), we change the time variable tto a

pseudo-time t by means of the formula ¢t = yw t and get
2" = €lm, 202 + w(m?_—ml)-%m.zwoz] (9)
2l + wh=-22"0 (10)

where the / indicates differentiation with respect to t. Assuming that 2,0,w and m, are
analytic functions of €:

— 2
2=1Ty + €1 + €1y + ...
—— 2
0-00+eol+502+...
— 2
w—w0+6w1+6w2+...

- 2
ml—ﬂ0+6u1+6u2+...

We introduce these expansions into Equations (9) and (10) and collect terms in like
powers of €. Sinre € ig an arbitrary parameter, each coefficient of the powers of € must be
zero. This results in setting up an infinite system of pairs of second order differential
equations which can be solved successively and recursively. The first set of pairs is
obtained by setting € = 0. The two equations obtained are:

r” =0 (11)
r006 + w000= -2r606 (12)

The solution of Equation (11) is Iy =T @ constant, since we assume as an initial
condition that ro'(O) = 0. The solution of Equation (12) then becomes

)

b = 00cos(kt) (13)




where 90 is the initial angular displacement, k? = uzo/r0 and we have assumed that
00’(0) = 0. It will turn out that wy plays no role in the {inal form of the formulas for p(?)

and &?). In terms of the physical variables, k* = g/p(0).

If Equation (9) is differentiated with respect to the parameter € and then € is set
equal to zero, we obtain:

%) (14)

When the values of 00 and 6y , as given from Equaticn (13) and its derivative, are
substituted into Equation (14), and remembering that Iy = Iy, a constant, then, after some
algebraic manipulation, Equation (14) may be written as:

. _ 2 -1
" = molo by * - ugwy + mzwo(l :

1" = Wyl + my + (i)mQHOQ - (%)m2002cos(2kt)] (15)

Since we are seeking a periodic solution for r, the secular term in the general solution
of Equation (15}, the term that would give rise to a quadratic increase or decrease with
time in I, will be eliminated if we set:

g = my + (Hmydy’ (16)
Otherwise, r, will contain a term of the form (~u.0 +m, + (i)m2002)t2/2 and, depending
on the relative magnitude chosen for y; and (m, + (Ti)m2002)’ r, increases or decreases
quadratically with time. Tle solution of Equation (15), for the initial conditions
n0)=r- 0) =0, is:

r, = (-fg)rﬂm.zﬂoz(cos(Zkt) -1) (17)

When Equation (10) is differentiated with respect to € and then € is set equal to zero,
we obtain:

rOOi + o) =105 - w100—2ri0(') (18)

Since Iy, 00 and ry are known, we substitute their respective values into the right-hand
side of Equation (18) to obtain:

rdi + wofy = fp{-w; + (-;—%)m.zﬁozwolcos(kt) +

[(ﬁ)mzﬂozwolcos(Bkt)} (19)

10




We are interested in obtaining the particular solution of Equation (19) that remains
bounded with increasing time. i.e. we are interested in excluding the secular term. That
part of the particular solution of Equaticn {19} that arises from the tonn

Bolwy + (:‘3—§)m2 0y”wplcos(kt)
is of the form at sin(kt), where a is a constant depending on the several constants in the

equation, namely, Tgr Yo @7 00, m,,, and k and whose explicit dependency on these is not

important. What is important is that unless a = 0, the function t sin(kt) oscillates wildly
and it is this oscillation that must be eliminated. This is done by choosing

wy = —(-;-g)mloo%o (20)

With this done, the particular solution of Equation (19), with initial conditions
01(0) = 01'(0) =0, is:

0, = (—Zl—g’lg)ﬂo(mzeoz)[cos(kt) — cos(3kt)] (21)

Note that if wy is not chosen as in Equation (20), then the solution for 01 will

oscillate wildly with time. We interpret this by saying that the mathematical procedure
fails. Thus, in order to retain mathematical viability, we must pick w; as given in

Equation (20).

If we were to proceed no further, we would have the following approximate solutions
to Equations (3) and (4) (after setting € = 1):

2=1g[1 + (—&)m?&o?(cos(’zkt) -1)] (22)

0= fy{cos(kt) + (—;—sﬁg)(mzﬁoz)[cos(kt) - cos(3kt)]} (23)

where m, =m, + (-l—)mz 002 (24)
W= wo[I - (';'g')mggozl (25)

k2 = wy/ry (26)

We proceed to get the next higher order terms in the expansions for 2, 0, m,, and w.

11




By equating the coefficients of €2 from both sides of Equation (9), we get

= ~{wgpy + w (g — my)] + my[r, 0 + 2ry 0361

_mz[ 0 + 2wy, 0, (27)

After substituting the several quantities already found for their respective values as given
in the right-hand side of Equation (27), it may be rewritten as:

I = (512)m2 0 0[4 cos(2kt) + 9 cos(4kt)] (28)

and where, in order to preclude the introduction of a secular term in Iy, we had set:

by = (Emy2g* (29)

The solution of Equation (28), subject to the initial conditions r2(0) =1,"(0) =0, is:

)

Iy = t‘f—s] (ms8y%)%r[25 - 16 cos(2kt) ~ 9 cos(4kt)] (30)

By equating the coefficients of €2 from both sides of Equation (10), we get:
rgbs + wylby + [r 0] + w0, +2r 70,7 +
[ro 0y + woly + 2857 0y’ =0 (31)

After substituting the values already found for ro,ﬂo,rl,al,wo, 1 and their derivatives
where appropriate, we get:

r002'+ O [ }m.z [163 cos(3kt) — 291 cos(5kt)] (32)

and where, in order to preclude the introduction of a secular term in 02, we have set:

Wy = (128)m.22004w0 (33)

The value of 6,, subject to the initial conditions 02(0) = 02’(0) = 0, found by integrating
Equation (32) is:

6, = L—%J m,24,5(66 cos(kt) ~ 163 cos (3kt) + 97 cos (skt)] (34)

12




Summarizing the results obtained thus far, we see that after setting € = 1, we get the
following approximate solutions for 2(t) and &t):

2(t) =14l + (Tlﬁ)m.zef(cos (2kt) - 1) +

{—f;]:n22004(25 ~ 16 cos (2kt) — 9 cos (4kt)] (35)
2

B(t) = Gofros (kt) + (-r)l—s%)mzﬁgg[cos(kt) - cos (3kt)] +

[;%—7—} m,*§,*{68 cos (kt) — 163 cos (3kt) + 97 cos (3kt)}}, (36)
where
- 1 2 29 4
m) = my + (3)myf® + (g‘il%)mz N (37)
= — (L 2 9 \ym. 249 4
w = wy(l (32)m200 + (128)m,2 N (38)
-1 -1 .
Sincet = (w) 2¢ 2(t) = 2(w 2 1), At)3 ¢(w 2 1), ie in Formulas (35) and (36)
-1
replace t by w % ¢. Finally,
-1
pt) =ga(w 2 1)
and
-1
O(t) = 0w % t)
I1.2.b Atwood's Pendululm—non-periodic motion. The configuration, symbols and

references to equations are as in the previous section, I1.2.a. Whereas in the previous
section we used 1 ~ 62 /2 as the small angle approximation for cos 8, we shall in this section

set cos § = 1. Equation (3) remains unchanged but Equation (4) simplifies to:

(m; + m,) 2- rn2»z¢9'2 +(m) -my) =0 (4.1)

Having seen that for the periodic solution to exist, we must have m; > m, (to counteract
the centrifugal force produced by the swinging motion of the mass m2), it is reasonable to
expect that if m, is less than the critical value as given (approximately) by Equation (37),
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then the length 2 would increase indefinitely (or at least to the e:tent the physical
apparatus would permit), whereas if m, is greater than this critical value, then 2 would

approach, and become, zero. These observations were confirmed numerically, and in fact
the computations were carried out without assuming the small angle approximations, by

integrating Equations (1) and (2) (Mittleman® and Zeigler?).
The special case for which m; = m, was studied extensively using numerical
integration in Mittleman® and Zeigler?. In %, Jon Lee discussed, using asymptotic methods,

both the short time and the long time behavior of this case and provided a theoretical basis
for the numerical experiments reported in % and *.

I1.3.a Two Countered-Balanced Dumbbells. The system to be described is depicted
in Figure 3. The two masses my and m,, are connected by a massinss rigid rod and

suspended by inextensible wires from the two pulleys Py and Py- The wires then run
horizontally across the top of the apparatus to the pulleys P3 and p 4 and then drop down
to the two masses Mg and m 4 which are also connected by a massless rigid rod. If the only
forces allowed to act on the two masses m; and m,, are gravity and the tensions in the

wires and there are no initial conditions on these two masses to produce motion out of the
vertical plane, this dumbbell can move only in the vertical plane. For the dumbbell made
up of the two masses My and m 4 initial conditions can be chosen so that the four points

P3» Dy» Mg, and m, need not be coplanar and in fact, the dumbbell mgq - m, need not lie in
the vertical plane containing P3> Dy The mathematical description that follows is based on
these assumptions.

The kinetic energy of the four masses is:

4
— 1 o2 Y2 1 o2
T“izmi("iﬂi”i) (1)

i=1
The potential energy of the four masses is:

4
V= 2 m, gz, (2)
i=1
We introduce the following vector notation: for i = 1,2,3,4 (where appropriate)
r‘l = (Xiv y15 71)

by = (pix’ piy’ piz)
i 7T

<i
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4= T3
= (0,0,g)
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The equations for the constraints are:

¢y (F) =To).(F) = Tp) = Ry Ry,
9y (F3-Ty(T3-Ty) = Ryy Ry
1 1
93 0y WP+ 0yl =
1 1
2

[F,-B)) (1 =B + (T3 - By) (3 -B))> =L, —dy

1

+ (1, 74]57 =

2D ) =

¢4: ng ’ 7‘)]

-~

1 1

[Py~ Bo): (Ty = By)l® + (T4~ By) (T —By)? = Ly~ doyy

where L, and L, are the lengths of the two connecting wires.

Hamilton's Principle is:

'
6]; F(t;xl,x2,...,zz,z3)dt =0
0

and where:

4
F=T-V+ ?/\i(t)gbi(xl,x2,...,23,z4)

and where the ,\i(a) are, for the moment, Lagrangian parameters. Carrying out the details
of the computation leads to the following system of equations:
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- T, - p
w2 - 1 1
mr =-mg+ 2/\l(t)(r1 rz) + As(t) ——71——
- -
s o ~ 5 Ty = Pg
MyTy = —Myg = 2A;(1)(r; ~ Ty) + /\3(t) —72—~
o - . - - I?3 - 53
I S - = ?4 B 3
mr, =-m,g - 2)\2(t)(r3 - r4) + ,\4(t) ——74———

to which we must adjoin the four constraint equations.

This second order system of differential equations is replaced by an equivalent system
of first order equations so as to facilitate using numerical integration; in this case we chose

Runga-Kutta-Fehiberg®.

=V,

N ~ 5 ?1 - f"1
myvy =~y g + 2X(t)(T] = To) + A4(t) T
N -

Ty =¥y

5 To - D

. = 2 72
MyVy = —Myg = 2/\1(t)(?1 - ?2) + /\.Z(t) ——[2——
I3 =Vs

- -

7 - s ey -+ Ig - p3
MgVy = —INag + 2A,(t)(rq ~1,) + )\3(t) —173——

T4

=7
4
= 2
- - D,
-3
r —

r
. - - 4 7.
MgV, = -M,g - 2/\2(t)(r3 - 4) + A4(t) —7:1

and again we must remember to adjoin the four restraint equations.

These equations are not as yet in a form suitable for numerical integration since we
do not know how to handle the four /\i(t). We proceed as follows. With time, t, as the

independent variable, differentiate each of the four constraint equations, twice. By

16




— -

adjoining these eight equations to the twenty~four that contain fi and v.. we can eliminate

all time derivatives. The result of these lengthy and tedious algebraic manipulations is a
linear system of four equations in the four /\i(t). The numerical integration can now begin.

Pick initial conditions for ri(o) and v,(0) consistent with the constraint equations.

Although it is possible to parameterize these four constraint equations, this is not
recommended. Instead, use a Newton-Raphson procedure. With these values, calculate
the Ai(O). Enter into the Runga-Kutta-Fehlberg routine. As the program progresses

through the several steps of the R—K-I routine, it will be necessary toc know (i.e. calculate)
intermediate values of the ?i and ?f'i; these will be got from the constraint equations. Thus,

even for one step in the R—K-F algorithm, to get ?i(tl) and Vi(tl), it is necessary to make

several intermediate computations using the constraint equations. The number of such
intermeciate excursions will depend on which order R-K-F you chose to use. The details
of the code are not included in this report; the programming and running of it was done by
Arnel Pacia of WRDC/FIBG and would be available from that source.

While there is literature on systems of differential equations with algebraic
constraints, none seemed immediately applicable to this particular problem and the method
described, therefore, was invented for this application.

Several computer runs were made using this code and aside from the general
oscillatory patterns that we had come to expect there was one surprise. When we picked
equal lengths for the two wires connecting m; ~mg and m, —m, and displaced the

mg —m, dumbbell from its rest position and released it so that it would swing, we
calculated the distance from the center of the mg —m, dumbbell to the center of the
m; —m, dumbbell measuring from the first center over the top of the apparatus and then

down to the other center, we found that this distance changed and depended on the angular
orientations of the two dumbbells. It was always less, albeit the amount was very small,
than the common lengths of the connecting wires. While this is of no significance in this
problem, it portends difficulties if one were to try to formulate a problem for three masses
in a row, again rigidly connected, counter—balanced by a similar arrangement and
connected by three wires of equal length. It seems to this writer that the problem is akin
to the problem of supporting a rod at three or more points; this problem is known to be
statically indeterminate and elastic theory is required for its solution.

i[.3.b Two Counter-Balanced Dumbbells Connected By Three Wires. From the
discussion presented in the previous paragraph, if three wires are used to join corresponding
points on the two dumbbells, and one of the dumbbells is set into motion, there could be no
tension on the center wire. This writer would infer then that the problem of three
connecting wires will yield results not different from those obtained from the problem with
two connecting wires. The evidence is as indicated above but a more convincing argument
may be required.
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I1.4 One Dumbbeli Counter-Balanced By Weights. Suppose the configuration discussed
in 11.3.a is modified by eliminating the constraint c:)l, that is, by assuming that the masses

m, and m, are not rigidly connected, in fact, are not connected at all. Under this
assumption the only motion possible for these two masses is vertical, i.e.

kl(t) = y,(t) = Xy(t) = yy(t) = 0. The equations of motion for this situation are trivially
derivable {rom those given above by paralleling the derivation without the ¢, constraint.
We have not carried out the details and thus have no numerical results to report.

As yet, another possibility would be to initially have Mg, My and the rod connecting
them at rest and impart initial velocities to my and 11,. The above equations certainly
suffice; we have not, however, carried out the details and have no results to report.

[t would be reasonable now to counter--halance the dumbbei. hy three or more
weights and study the motion. Obviously this modification circumvents the problem of

static indeterminance and might provide further insight into the motion. This has not
been done.

I1.5.a Counter—Balanced Rigid Rod — With Two Wires. We start with a rod of
length [ uniform density P and uniform cross~section AO. The ceuter of mass of the rod

is at the point 0. Consider this rod in an inertial coordinate system (x,y.z) such that one
end of the rod is at the point ?1 = (Xl‘yl“zl) and the other end is at the point

- o . .
Ty = (x.z,y2,z,2). If cos @}, COS @y, COS Qg are the direction cosines of the rod with respect

to the inertial coordinate system, then (cos Qy, COS (), COS a3) = (?2 - ?1)/1‘ The
coordinates of an arbitrary point on  he rod is given by the vector

- - -
I +(r0—r1)a 0<o<1

r4

-
T =

In the rod, set up a right~hand coordinate system (x’,y”,z*), with the x* direction
along the length of the rod, ithe y” and the z* directions both orthogonal to x” and to each
other, but otherwise unspecified. The origin of this system is taken at 0. If the linear mass
density of the rod is given by p(x*) > 0 (in our case, p(x") = po), then the mass m, of the

rod is given by
my = fp(x’) dx’ = ,001
and 0= fp(x’) X’ dx’

and [ = [px ) )dxs = (m,1%)/12




and where the integraticn is on the interval |- é , .g. Let the origin of the (x",y’,2")

system have coordinates (x}w-"{(vzy) in the inema{ system. Then an arbitrary point P in
space may be referenced in both systems; the relation between coordinate values in the two
systems being given by

.\.::.\lc+aux T a1,y 42

~
}

2, K+ Aqay’ . ‘
1o 831\ +a3_~w\ +a332

and where A = (z\.ij‘) is an orthogonal matrix. For noints on therod, v2 =z’ = 0, and we
I;a\'e

C il
YE e T
7 o= &
2, llc+:1:31)\

To calculate the kinetic energy of the rod, we consider first an element of length dx-.
['he mass dm associated with this element is p(x’)dx’ = podx' and the square of the

velocity, v2, is:

v +yi 427
and where
X = '\.:1C : :'1‘11_\"
IVt Ay
7 = }’IC + ézlx’
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The kinetic eaerzy of this element is equal to (! Ma(xjdx v andd after summing over

the length of the rod. the kinetic energy is

) N 2

(v 2an 22 Th 24 244 2
Xy e +Z1C)ml+§(dll + 2,7 Fag )I1

This is nothing more than the well known result that the total kinetic energy of a rigid
body is eaqual ¢ 2o the translatioual kinetic energy of the bocy as if all its mass were
concentrated at the centcr of mass and moving with tne velocity of the center plus the
kinetic energy of rotatica abcut the center of mass.

The three variables y1+251 857 ATC NOL indepe ident but are related by the equation

R ) 3 3

ay Ty Tt T = L Independent variables 01. o, may 1o introduced as foilows: let

s Joan, = =in oLosin 4,0 Then

s 1* 19 = 1

A
"1 1

: RN RN 2 g2 R )
Ayt Tyt = )T il o

)

The potential energy of Jie rod is:

\"] :fp{,\"‘)zg( *]0\) 24qX 7y edx

= 4.8 fp(x’) dx” + a3,8 fp(\")x’dx’ =182y,

The Lagrangian function for tie rod is:

Since a second rod is to be included in the configuration being studied, we would
repeat the above computation with all subscripts | replaced by subscripts 2. This would
lead to the following values for To, V., and L,.

NI - 1h. 2 4t
(3,74 Ve Jrz)C )m.2~}~5(b11 +b

o1" T 537 Iy

and the direction cosiiies fa.lj} have been replaced by the corresponding direction cosines for
the second rod “)i'])‘ The potential energy is given uv:

Vi, =m

8%

and the Lagrangian function L, =t - V', There remain the constraints imposed by the

wires connecting the two rods.

We develop the ca-o for two wires connecting the two rods. Refer to Figure 4. The

positions of the foar puilevs i the inertial system are given by Pi = (pli"p‘7i‘p'3i)’




1= 1234 We assume that all four p,. are at the same height above th2 ground plane,

although this is not essential. The distances |3, - 53[ = |py - 54| =d)3=dy, aud
-'51 -yl = f53 - 545 = dl“’ = d.34 are assumed to be constant. We shall refer to the wire

9.
passing over putlevs 1 and 3 as wire 1 and the wire passing over pulleys 2 and 4 as 2 and
denote the length of wire 1 by 11 and the lengih of wire 2 by §,. Wire 1 is connected to rcd

1 at the peoint (,\’1‘ ,0.0) in the coordinate system fixed in the rod 1 and is connected to rod
2 at the point (.\'3" .0.0) in the coordinate syvstem fixed in that rod. In the common inertial

coordinate system, the cooriiinates of these two poiuts are:

[ - . S ! -xo oo ;x { . X, . ¥ , %\
()0 T a Xy Yy Ay X7 g ds Xy )} and (X5, + b1 1X3 Yoo b21x3 2.+ bSl.\3 )

respectivelv, We shall refer 1o this firsy tripiet of values by g, and the second triplet by

% The length I of wire 1 is then given hy
1

rl: |51—511+d13+f53—§3f=11

[ strictly analogous fashion, wire 2 is connected to rod 1 at the point (x.z* ,0,0) and to rod
2 at the point (x; 0.0). In the inertial coordinate system, we would have

P , Xy, . X R
q?"(‘\lc+all‘\2 VYo T Ay X 2y, + agyXg ) and

lc
64 = (x"c + b v, b.)lx4* »Zye b31x4“‘ ). The length I, of wire 2 is then given
by:

Ly iag*ﬁgl T d~24+ i54_?l4| :12

Note that 1‘1 and T, represent the constraints on the system. The coordinates of {he Bi are

assumed to be fixed but the coordinates of the Z;'i are variable.

While the time t is the onty independent variable, the dependent variables are X
Yo 200 (91, 015 X Yo 2o 02, 052. We are now in a position to form the generalized

Lagrangian:

and obtain the Euler-Lagrange equations by taking
‘1
§f Lrdt=0

"o




We leave the comiputation at this point because it paraliels brin 7 etically and
numerically the work presented above. Computer codes were not wiiten for this case;
time did not permit.

1.5 Counter-Balanced Rigid Rods — Withi More Thar Twn Wires. If the two
wires are attached svmmetrically 1o the rods at the noints {:':': *.N,0}. and (i.\:,; .0,0) and

rod 2 is set mmgww while the botial condivions for rod 1 are U 1gen ¢ that it can move
only in the [_v1 .711 plane, then. I believe that the distance hetween the centers of the two

rods, as measured over the top of the apparatus, would be less than the distance similarly
defined if measured when both rods are at rest. Thus. fur example, if a third wire looped
over the top of the apparatusz were to join the two ccaters, there wouid be slack during
most of the time that rod 2 is swinging. The situation recuces then to one of static
indeterminancy and it is questionable. in my mind that tiis method of approach, namely
two counter-balanced rigid rods connected by throe or mere wis * can be correctly solved
by simply adding adiitional constraints. o i:e would need be i ' 1o elastic theory.

If one forgoes the second rod and ma hes the one rod to a set of 1solated point
masses by wires stretched over the top »f the apparatus, the problem becomes tractable
and the methods described above can be used 1o anaivze and describe the miotion. These
details have not been carried out.

[1.6.a Two Counter—Balanced Flexible Rods — With Two Wires. In tiiis section, we
set up the Lagrangian function of two counter-balanced flexible rods. The general
appearance of the apparatus is as for the case of twe rigid rods; as may be e\pected
however. further analysis is required.

We start with an inertial coordinate system (,\:1.)'1,21) and consider a rod of uniform

density py and cross-—section A, whose center of mass is at the point 0: (xlo,ylo.zlo) in the
inertial coordinate system. Lot {;~:2,y2,22} be a coordinare system whose origin is at 0 and
whose axes are and will remain parallel to tlose of the {x ,yl.zl) systern. The (X2,y2,22)
axes will move as the center of mass of the rod moves. Let (x3 Y3:Zg ) be a coordinate

system whose origin i3 a‘~ 5ad hut whose axes coincide with the principal axes of inertia of
the rod; the x y axis lying along the long axis of the rod. (Figure 5.a.)

Let P he 4 point o -pece whose coordinates relative to the (x3 ¥y 23) axes are

(03 33 5, pand whose coordinates in the (x,,.0, z,) system are ((\‘).J.j, o then

-
{00.3,.7,) == Ala. ) on 3y, 1)
!02 }l ,'2) (au‘( 3 33 f'j)
where A(au) is an cithogonal matrix spocifving the orientation of the (x. 3¥ 37 3) system in
the (x,.74.24 ) svsten and (ari.d.},‘;,,)r stands for the transpos» of ((13.;3‘3,73).
v .o - . . <) . .




If the coordinates of the point P in the inertial system are (al,;’il,yl), then

. T
(o Bmy) = (%% ") + Alyy)(ag.d3.73)

We consider now the rod flexed about the B direction. Bcfore Londing, a
cross—section in a plane perpendicular to the Y3 direction remains, after bending, in a plane
perpendicular to the ¥g direction. Such a cross—section, in a plane parallel to the (x3,z3)
plane, is depicted in Figure 5.b.

Suppose now that the rod, before being bent, had been sectioned into small lengths
by a set of planes perpendicular to the Xq axis. Let us look at one such section and the

nartitioning planes after bending. Grossly, this is indicated in Figure 5.c; the two planes,
which had been parallel before bending, now intersect in a line parallel to the yq axis and

pass through the point marked 0 in that figure. An enlarged version of that section is
given in Figure 5.d.

If (03,[5’3,73) are the coordinates of the center of mass of the element of volume
depicted in Figure 5.d, then we set up a fourth coordinate system (x4,y4,z4) whose origin is
at (03,63,73) and whose axes are parallel to the (x3,y3,z3) axes. In this coordinate system,

the mass and volume of the section, which we denote by Am and Av, are related by the
equation Am = pOAv.

Let (04,64,74) be the coordinates of a point P* in the element Av depicted in Figure
5.d. Since the (x,,y,,24) system is parallel to the (xs,y323) system and (013,63,73) are the
coordinates of the center of mass of the element Av in the (x3,y3,z3) system, then the
coordinates of P* in the inertial system are:

T
(Xl’yl’zl) = (XIO’yIO’ZIO) + A(aij)(a3+a4,ﬂ3+ﬁ4,73+ 74)

The xinetic energy of this element of mass is:

1 o240 24052 ,
5ffff’o("1 +y) 2y %) dxydy,dzy
(Av)

where
<. . . . e o« T 2 T
(Xl'yl’zl) = (Xlo,ylo,zlo)+A(&ij)(03,,’33.73) +A(aij)(a3+a4~ﬂ3+i 4(73‘*‘74)
The "phase space" variables are:

(kloa).'lo»ilo)) A(alj)’ (03’ﬂ3a73)1 (033/33)73)
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since the variables (.1"1,;34,74) are dummy variables in the integrac

To calculate the potential energy of this element of mass, v.e need:

B _ 8] . . L /? v 3 v
2 = 2" + ag (agta,) 4 323‘2("'?5*’}4) toag, gt N

so that the potential energy is:

S [ Jogelz)® + agylagtay) + ag, (23430 + agylny+ 7, )] dxydydzy
(Av)

= ppele)” + agy(ag) + agy(Fy) + aglyg)] Av

«

ol 0 ( Yo+ /
A!‘W‘O[LI + d31(ﬂ3) + a%jk‘%) + 333\73)]
The "phase space” variabies arc. 2,% (ag.83,%,), and (24,239,233)-

We calevluie the strain energy U in the rod as follows: Let (dU/dv), (where dv is an
element of volume), be the work of deformation so that (dU/dv) = % o€ whe:2 o is the
stress in the x3(:x4) direction and € the corresponding strain (deformation). From
Hooke's law ¢ = E€, where E is Young's modulus, and so the quantity we need to calculate

2

1907 _1pe2 W : : x
is ! %~ =L Ee“. We refer acain to Figure 5.d.
SQT ; € e ga ig

Prior to bending, the »octions mm and pp were parallel; after bending these two
sections intersect in a line (whose trace in Figure 5.d is 07) parallel to the ¥3 axis. The

longitudinal fibres, (those measured along the x 4 axis) undergo extension on the convex

side of the neutral axis, whereas those on the concave side are compressed. The arc nq is
the trace of the surface in which the fibres are neither compressed nor extended during
bending (the neutral surface).

The elongation of a fiber at a distance z, above the neutral surface may be found by

first drawing qs parallei to mn. We look next at the two triangles stq and nq0’. The
radial line 07 qt cuts the two circular arcs at right angles, i.e. we assume that the angles
nq0’ and stq are both right angles. Also, since sq is parallel to n0”. the line tqp0‘ may be
considered a transversal intersecting two parallel lines and thu-  gle sqt = angle n0’q.
The two triangles are similar and their corresponding sides are proportional. The "unit"
extension of the fiber rs is (st/nq) = (qs/0'n) = —(z4/p), where n = radius of curvature of

the arc nq. [Note: do not confuse p and oy the density of the rod; the negative sign comes

from the fact that in elementary calculus, the curvature is considered positive if the curve
bends convex upward.) Thus, the strains of the longitudinal fibers are proportional to their
distances from the neutral surface and inversely proportional to the radius of curvature of
the neutral surface. Since we are assuming that (dz3/dx3) << 1, we are assuming
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that the curvature may be taken as (d223/dx32). This permits us to write the unit energy

(dU/dv) = %}3[24(d223/<:b<32)]2

Thus: (AU) = 1E(d%3/dxy?) 2 [ [ z2pdx,dy,dz,
- 1B, /a2 Ax) T f 7,2y de,
If we let
D= [ [ 2gdy,dzy
then

(AU) = 1E(d%3/dx?)(Ax,) I

1 2 22
= 1EI(d%q/dx?)(Ax,)

Continuing, the kinetic energy of the rod =
1 e 200 205 Ndy
SBog J S J Gy 42, 0)dxydy o) dxy
(8v)
the potential energy of the rod =

f Amg [z, + ag;(ag) + a39(35) + ag34(73)] dxg

and the strain energy of the rod =
f LEI(d%,/dx3?)(dxy).
The integration in the x, direction is over the length of the rod, [-51 , El]

This computation must be repeated for the second rod which is to be used to
counter~balance the first one. In addition, and paralleling the method used in Section II.5,
two constraints I'; and I, are to be introduced. The Lagrangian function takes the form:

L = kinetic energy — potential energy — strain energy + ,\1(t)l“1 + A2(t)F2

The Euler~Lagrange equations are then obtained from Hamilton's principle:
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Y
5f Ldt=0
t

0

Whereas in the previous examples, the Euler-Lagrange equations were ordinary
differential equations with algebraic constraints, in this case they are partial differential
equations with constraints. Numerical procedures, such as the finite element method,
would have to be extended to take into account these constraints.

I1.6.b If more than two wires are used to join the two rods, the problem assumes
another dimension of complexity. In the previous section, the flexibility was assumed
limited to vibrations about the Y3 axis; the bar was treated as if it were rigid with

respect to bending in the 24 direction. Whether a third wire would provide support or
simply be slack when the rod is vibrating only about the Y3 direction is not known.

In order to get a better understanding of what is happening, it may be necessary to
remove the restriction that the connecting wires be inextensible and allow for elastic
connecting wires as was done in Section I1.1.c.

The comments of this section are purely speculative. It may be possible to get
theoretical answers. Numerical results should be obtainable with reasonable effort.
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Figure 1.a
The clessic Alwood's machine.
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Figure 1.b
An Atwood's machine with unequal redil.

29




™

| E |
| |
| i
| y
I

1 i
|

l

l'.'.

|
7 7 f///\y////z/7*72'/7/////

Figure f.c
An Atwood's maghine with elastic wires.

30




R
-  —
|
| " E
|
|
" A
| I
mlt I
| M |
i :
| 2 !
| | {
v v v
Figure 1.d

An Atwood's machine with friction on the besring.
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Figure 2
An Atwood's pendulum.
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Figure 4
Two wires connecting two rigid rods.
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Figure s.a
Orientation of the unflexed rod in space.
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A section of 8 slice of the rod,
8 cross-section perpendicular to the y, sxis,

before bending
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Figure s5.c
A section of & slice of the rod,
a cross-section perpendiculer Lo the y, oxis,

of ler bending.
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Figure s.d
An enlergement of Figure 5.¢
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